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Note on the numerical solution for unsteady viscous 
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The starting flow of a viscous fluid past a circular cylinder at  Reynolds numbers 
40 and 100 has been obtained by a numerical method. The method used is that 
developed by Payne (1957) but it has been extended here to cover a larger time 
interval. 

At Reynolds number 40 Payne’s result for the drag coefficient at  time t = 6 
is in reasonable agreement with Kawaguti’s (1953) result for the steady case but 
if Payne’s computation is extended to time t 24, the result is in better agree- 
ment with Apelt’s (1961) result for the steady case. Also, a further investigation 
into the case R = 100 shows that Payne’s mesh size is too crude. Similar observa- 
tions can be made concerning the size of the standing vortices downstream of the 
circular cylinder and how they grow in time. 

1. Computations 
For Reynolds number 40 the following computations were performed (the 

notation and computational method is that of Payne 1957): (i) the space mesh 
size A = 77/15 = 0.20944, so that there were 30 mesh points round the cylinder 
at  intervals of 12 degrees, and At = 0.1, i.e. Payne’s computation; (ii) A = n/15, 
and initially At = 0.05; At was doubled on occasions-the criteria for doubling 
being that the same value of the drag, to within a prescribed value, could be 
obtained with the larger mesh size; (iii) A = 77/20 with a variable At as in (ii), 
At = 0.025 initially; (iv) A = 77/25 with a variable At as in (ii), At = 0.01 initially; 
(v) the starting solution for small time ( t  < 1) as obtained by Goldstein & 
Rosenhead (1936) was taken and then a variable mesh size A was used starting 
with A = 77/120 and finishing up with A = 77/15. 

For Reynolds number 100 the following computations were performed: 
(a)  A = 77/15 using a variable At as in (ii) with At = 0.1 initially, these results 
coincide with Payne’s calculations; ( 6 )  A = 77/20 using a variable At as in (ii) 
with At = 0.05 initially. 
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2. Results 
The variation of the drag coefficient, C,, for t in the range 0 < t < 4 is plotted 

in figure 1 for Reynolds number 40. This shows how the value of C' depends 
critically on the mesh size near t = 0 which is to be expected since a t  small times 
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FIGURE 1.  The variation of the drag coefficient with time for the starting flow past a 
circular cylinder for R = 40. - - - is for computation (v). 
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FIGURE 2. The variation of the drag coefficient with time for R = 40 and computation (v). 
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the boundary layer is very thin and hence better results are obtained with the 
smaller mesh points as there are more mesh points in the boundary layer. Figure 2 
shows the result of computation (v) fort in the range 0 to 24; in the time interval 
4 < t < 24 the other computations are within about 1 % of this value of C, and 
are therefore not presented. It is seen from figure 1, even at small times, as t 
increases the values of C, obtained by using the different mesh sizes are tending 
towards the same value. In  fact (i), (ii), (iii) and (v) all give at  t z 24 the drag 
coefficient to be 1.51 & 0.01 and the value appears to have settled down to this 
steady value. Computation (iv) has not been carried out to times O(24) because 
of the large amount of computing time required. 
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FIGURE 3. The variation of the drag coefficient with time for R = 100. 

For Reynolds number 100 the variation of the drag coefficient with time is 
plotted in figure 3. It is seen that with neither mesh size does the drag coefficient 
approach the steady value as obtained by Relf (see Thom 1933) but the smaller 
mesh size, as expected, gives a better approximation. 

Figure 4 shows how the length of the pair of vortices downstream of the 
cylinder grows in time for Reynolds numbers of 40. It is seen that 2E/d, where E 
is the length of the pair of vortices, appears to be approaching a constant value 
for each computation for sufficiently large times, but in no case is this the 
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steady state value as derived by Kawaguti or Apelt. Again it is seen that the 
smaller mesh size gives a better approximation. 

At  time t = 6 the drag coefficients for computations (i) and (ii) are about 2 yo 
above the value of 1.6177 calculated by Kawaguti for the steady flow, as noted 
by Payne, but the value of CD a t  time t x 24 is in better agreement with the 
results of Apelt who predicted a value of C’ = 1-496. The most likely reason for 
the discrepancy between Apelt’s solution and the one obtained here, by consider- 
ing the unsteady problem at large times, is that the mesh size is too crude. The 
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FIGURE 4. The variation of the length of the vortex pair attached to the cylinder with 
time. The values obtained by Apelt (1961) and Kawaguti (1953) for the steady flow at 
Reynolds number 40 are also shown. 

values of vortieity are therefore not exact and since CD is obtained by summing 
over all mesh points, which involves the multiplication of the vorticity and the 
distance from the plane of symmetry, y, a slight error in the vorticity at  large 
values of y can have quite a marked effect on C’. 

The streamlines and lines of constant vorticity are very similar to those dis- 
played by Payne in general and therefore are not presented here. 
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